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The problem of selecting exact and approximate models of heat transfer is analyzed 
for the solution of inverse problems. 

Inverse problem methods held a strong place in heat transfer research practice. The de- 
velopment of regularizing algorithms afforded the possibility of overcoming the incorrectness 
of inverse problem formulation and of their successful application to process measurements 
and raise the informativity of experiments on this basis [i, 2]. Extremely valuable to the 
formulation of inverse, just as for direct, problems is the selection of the mathematical 
model relating the cause and effect characteristics. As a rule, a certain number of models, 
differing by the completeness and accuracy of the process description on the one hand, and 
by the complexity level on the other [3, 4], can be compiled for the very same process. Selec- 
tion of the model structure (structural identification) is the first step in mathematical 
formulation of the problem and can be formalized in the form of successive complication of 
the model and its verification for adequacy to the real process [4]. Such a sorting is natu- 
rally determined mostly by the subjective experience of the researcher. The quality of the 
selected mathematical model is characterized by compromising different, often contradictory, 
requirements. Then the requirement of adequacy of the model to the real process is just one 
of the conditions of its efficient utilization, but is by far not the only one. Such prop- 
erties of the mathematical model as its simplicity, machine time expenditure in a numerical 
realization on an electronic computer, especially during execution of a large series of com- 
putations or during solution of problems in a real time scale are quite important, governing 
in a number of cases. 

Since model insufficiencies are extensions of their virtues, a situation is completely 
possible when one of the models of a set satisfies the researcher for some reason or other. 
In other words, the value of the functional 

J = J1 ~- J2 ~- J8 ~- .... ( 1 ) 

where  J1 i s  t h e  c r i t e r i o n  o f  mode l  a d e q u a c y  t o  t h e  r e a l  p r o c e s s ,  J2 i s  t h e  e x p e n d i t u r e  o f  
manua l  l a b o r  in  c o m p i l i n g  t h e  a l g o r i t h m  f o r  t h e  c o m p u t a t i o n  and t h e  p r o g r a m  and J3 i s  t h e  
mach ine  t i m e  e x p e n d i t u r e ,  e t c . ,  t u r n s  o u t  t o  be  i n s u f f i c i e n t l y  s m a l l ,  no m a t t e r  wha t  model  
would  h a v e  been  s e l e c t e d  a s  t h e  w o r k i n g  mode l .  

Thus ,  a c c o r d i n g  t o  t h e  e x a m p l e  p r e s e n t e d  i n  [ 5 ] ,  t h e  s o l u t i o n  o f  t h e  p r o b l e m  o f  r e s t o r i n g  
t h e  b o u n d a r y  h e a t  f l u x  d e n s i t y  by  a g r a d i e n t  method  w i t h  t h e  d i s t o r t i n g  a c t i o n  o f  t h e  t h e r m o -  
c o u p l e  t a k e n  i n t o  a c c o u n t  r e q u i r e s  s e v e r a l  h o u r s  o f  m a c h i n e  t i m e  e v e n  f o r  a s u f f i c i e n t l y  r o u g h  
d i s c r e t i z a t i o n  o f  t h e  s p a c e - t i m e  doma in ,  wh ich  c a u s e s  g r e a t  d i f f i c u l t y  in  t h e  n e c e s s i t y  t o  
p r o c e s s  a number  o f  m e a s u r e m e n t s .  I n  t h i s  c a s e ,  t h e  a d e q u a c y  demand h a s  been  s a t i s f i e d  b u t  
w i t h  s u b s t a n t i a l  m a c h i n e  t i m e  e x p e n d i t u r e .  On t h e  o t h e r  hand ,  t h e  s o l u t i o n  o f  t h i s  p r o b l e m  
u n d e r  c o n d i t i o n s  o f  t h e r m o c o u p l e  s p o t t i n g  r e s u l t s  i n  l o w e r i n g  o f  t h e  mach ine  t i m e  e x p e n d i t u r e  
by  two o r d e r s  b u t  t h e  e r r o r  i n  r e s t o r a t i o n  o f  t h e  d e s i r e d  f u n c t i o n  r e a c h e s  s e v e r a l  t e n s  o f  
p e r c e n t s .  

N e v e r t h e l e s s  when g o i n g  f r o m  mode l  t o  model  t h e  d i m i n u t i o n  o f  one  o f  t h e  componen t s  o f  
t h e  sum (1 )  w i l l  r e s u l t  i n  an a u t o m a t i c  i n c r e a s e  o f  t h e  o t h e r  ( o r  o t h e r s ) .  And t h o u g h  e v e r y  
r e s e a r c h e r  r a n k s  t h e  c o m p o n e n t s  o f  ( 1 )  i n  h i s  own manner  on t h e  b a s i s  o f  p e r s o n a l  e x p e r i e n c e  
and u n d e r s t a n d a b l y  t a k i n g  a c c o u n t  o f  e x t e r n a l  c o n d i t i o n s ,  t h e  e x a m p l e  p r e s e n t e d  shows t h a t  
s i t u a t i o n s  e x i s t  when one  o f  t h e  m o d e l s  a r e  t h e m s e l v e s  i n  a s t a t e  t o  s a t i s f y  s i m u l t a n e o u s l y  
t h e  imposed  demands .  I n  such  c a s e s ,  u t i l i z a t i o n  o f  a t w o - m o d e l  a l g o r i t h m  p r o p o s e d  i n  [6]  and 
p e r m i t t i n g  r e d u c t i o n  o f  t h e  t e d i u m  o f  t h e  c a l c u l a t i o n s  and t h e  m a c h i n e  t i m e  �9 e x p e n d i t u r e  ( i . e . ,  
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diminution of the values of J2 and Ja) can turn out to be useful in the solution of the in- 
verse heat conduction problem. 

The crux of this approach is that the initial formulation of the inverse heat conduction 
problem 

should be reformulated as follows 

~ ( ~ + l )  

A u 

A u =  f~ ( 2 )  

~ ( M  

A u  
= : ~ - 3 - ~ ,  k = o, 1, 2 . . . . .  ( 3 )  

A u  

where A, A are, respectively, the adequate (exact) and approximate models of the heat transfer 
process connecting the identical restorable causal characteristic u and the input information 
f6, as a rule, to the temperature at an inner point, known in the general case wit]h an error 
that fluctuates in the majority of cases. 

It should be noted that a method is proposed in [7] for restoring the boundary condition 
with a correction of the approximate model by solving the direct problem for the adequate 
model based on utilization of the Green's function, however, its domain of application is 
constrained to linear formulations. 

At the same time the procedure (3) actually performs an iteration by correcting the input 
information by adjusting it to the approximate model, utilization of the adequate model hence 
occurs just during the stage of solving the direct problem while the inverse problem is solved 
intrinsically by the approximate method in each iteration (3). In the general case the models 
A and ~ can here be nonlinear. 

The example of restoring the boundary heat flux density with the perturbing action of 
the heat sensor taken into account, presented in [6], indicates that four-five iterations 
according to the models in conformity with the algorithm (3) will be sufficient to obtain a 
solution with good accuracy. However, computations show that the number of necessary itera- 

(0) 
tions can be diminished if the initial approximation u is not selected arbitrarily but from 

the condition = f~, i.e., it is determined from the solution of the inverse problem for 
(0) 

the approximate model without correction of the input data. Such a selection of u affords 
the possibility of solving the inverse heat conduction problem in the formulation (3) in just 
one, at most two, iterations and thereby reduce the machine time expenditure still more. 

The machine time savings because of using the two-model algorithm (3) when solving the 
inverse heat conduction problem by a gradient method can be estimated approximately by the 
quantity 3Ng/Nm, where Ng is the number of steps in the gradient descent to the point of the 

minimum residual, N m is the number of iterations according to the models, and the factor 3 
appears because a computation by an adequate model in the one-model formulation (2) is per- 
formed at least three times at each step of the descent (the direct, the adjoint problem and 
the problem in increments). It is assumed in such an estimate of the machine time savings 
that the solution of the direct problem for the adequate model takes up the main time in 
each iteration (3). Therefore, even when using the rapidly convergent method of conjugate 
gradients, when the main structural singularities of the desired function appear after four- 
six steps in the majority of cases, the application of the two-model algorithm will result in 
a fifteenfold reduction in the machine time expenditure. This index will be still higher for 
restoration of causal characteristics of complex behavior, however in this case the necessary 
condition is smallness of the variance of the random error in the input data [6]. 

It can also be noted that another method exists for correcting the input information 
that consists of appending a certain correction, the two-model algorithm is here realized in 
the form 

_(~+1) 
A u = f ~ + A f ~ ,  k = 0 ,  1, 2 . . . . .  (4) 

(k)  (n )  

AD~ = A u  - - A  u .  ( 5 )  
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Fig. 2 

Fig. i. Arrangement of the heat sensor in the body; i) body 
2) thermocouple electrodes; 3) insulation. 

Fig. 2. Computed temperature at the measurement point for 
q = 8.10 s W/cm 2 (solid lines are variable thermophysical charac- 
teristics, dashes are constant thermophys!cal characteristics): 
i) model a); 2) model b); 3) model c). T", ~ T, c. 

It is clear than in the general case the efficiency of the procedure (4) and (5) in the sense 
of its convergence rate will be distinct from the analogous characteristic of the procedure 
(3). Thus it is easy to show that if the relationship ~u = (i + e)Au, holds, where e is a 
constant independent of u, then the algorithm (3) yields the exact solution of the inverse 
heat conduction problem in the first iteration while the additive correction (4) and (5) as- 

, (k), 1/  E) k + l sures convergence to the exact solution according to the law lu/u" - 11 = e k + (I + 
i.e.~ it converges more slowly than (3). Since the quantity e depends weakly on the form of 
the function u quite often and can therefore be considered a fully stable parameter charac- 
terizing the error of model ~ with respect to model A [6], then utilization of the procedure 
(3) to solve the inverse heat conduction problem is more preferable in these cases. 

Both the exact and the approximate models were considered given a priori in [6],for the 
realization of the two-model algorithm in a specific example of restoration of the boundary 
heat flux density while the main problem is namely the successful selection of these models. 
It is clear that the approximate model should be sufficiently simple on one hand, i.e., con- 
tain less information about the physics of the process and assure less difficulties in the 
numerical realization than the exact model. On the other hand, the discontinuity between 
the approximate and exact models should not be two great so that a high rate of covergence 
of two-model algorithm would be assured. Hence, quite contradictory demands are imposed on 
the quality of the approximate model. Selection of adequate model should be governed by its 
conformity to the real process and, in the long run, by the level of the error in restoring 
the causal characteristic as well as the labor-intensity of its algorithmization in the direct 
problem. 

Let us consider this problem in an example of a problem to restore the s 
boundary heat flux density according to readings of a chromel-alumel thermocouple located 
within a steel body (Fig. i). Such problems occur in the research on casting, cutting, con- 
tact heat transfer processes, etc. In conformity with the completeness of taking account of 
the physical heat transfer phenomena we present a list of certain possible models connecting 
the boundary heat flux density and the body temperature: 

a) Concentrated nonstationary thermal model:(T = T(~)) 

dT I 
pc = ' q ( '0,  T (0) = To; 

d'~ L 

b) Distributed nonstationary thermal model (T = T(x, ~)) 
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Fig. 3. Restoration of the boundary 
heat flux density for the concen-~ 
trated (a) and distributed (b) models 
selected as approximate (input data 
perturbed according to a normal law 

= 3% T~ax): i) Actual solution; O T 

2) initial approximation (u = A-Ifo); 
3, 4) respectively, the first and second 
iterations of the procedure (3) q, 106 
W/cm2; ~, c. 

I 2 

i /  , k 
o q2 4* "~ 

pc 0 ~ - -  Ox" "--~'x' 

Z OT(O, "~) =q(x ) ,  OT(L, ~) _0; 
Ox Ox 

c) Distributed nonstationary thermal model taking the thermal sensor into account (T = T 

9c 0~' -- Ox -~x + r~ T (x, r, O)= O, r Or Or J 

~. OT (O, r, ~) _q(~) ,  
Ox 

OT (L, r, ~) OT (x, O, ~) OT(x, R, "c) 
- - -  O ;  

Ox Or Or 

x ,  r, (~)) 

d) Distributed nonstationary thermal model with the thermal sensor and the finite rate 
of heat propagation taken into account (T = T (x, r, T)) 

=--D-Vt +-7- o--7 
T (x, r, O) = T O , OT (x, r, O) = 0 ,  - -  ~o OF(O, r, ~c) 

O~ " Ox = q ('~)' 

OT (L, r, ~) _ OT (x, O, T) OT (x, R ,  ~) 

Ox Or Or 

This series can be continued even further, say, because of taking account of the nonlinearity 
in the thermophysical characteristics (TPC), anisotropies, etc. 

It is clear that the quantitative contribution of each of the factors mentioned to the 
total thermal pattern will be distinct. ~hus, taking account of the distributivity of the 
heat transfer results in a change of several times in the temperature field, taking account 
of the real thermal sensor geometry 10-30%, taking account of TPC nonlinearity 5-10% (Fig. 2). 
The influence of the remaining factors on the temperature in the body equals zero in practice. 

Therefore, the model c), i.e., the distributed nonlinear nonstationary model of heat 
conductivity with the thermal sensor taken into account, can be selected as the adequate ther- 
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mal model for solving the inverse heat conduction problem in this case, as taking all essen- 
tial factors most completely into account. 

The situation becomes the following with the election of the approximate model. Results 
of solving the inverse heat conduction problem by a two-model method (3) that illustrates the 
efficiency of using certain of the presented models as approximate, are represented in Fig. 3. 
Application of the linear distributed model b) is slightly more complicated in realization 
than the concentrated model a), assures rapid convergence to the exact solution in just one 
iteration of the procedure (3). Utilization of the two-dimensional linear model c) as approxi- 
mate also permits obtaining a solution of the inverse heat conduction problem in one iteration, 
however, its realization requires a very much greater machine time expenditure than realiza- 
tion of the one-dimensional model b). The linear concentrated model a), being the simplest 
of all, required two iterations of the procedure (3). Results of applying the nonlinear 
models a) and b) as approximate are identical to those presented above. The deduction can 
therefore be made that model b) most efficiently fills the role of an approximate model in 
the solution of this inverse heat conduction problem. On one hand such a selection assures 
the maximal rate of convergence, and on the other not too intensive labor for algorithmization 
and acceptable machine time expenditure. 

The realization of a two-model algorithm should thereby be specified as the preliminary 
stage in performing test computations with the sorting of several approximate model modifica- 
tions. The model selected as approximate should be the simplest among all theaodels assuring 
the most rapid convergence of the procedure (3). 

The space-time domain was discretized with the number of steps n T x n x x n r = 60 x 
40 • 30 during execution of the computations. The numerical solution of two-dimensional prob- 
lems was performed by a locally one-dimensional method, by factorization in each of the coor- 
dinates. The linear concentrated and distributed formulations were converted into Duhamel 
integrals. The following values of the parameters were selected: R = 5.103 m; L = 1.2.10 -2 
m, r 0 = 0.6-10 -3 m, r e = 0.15.10 -3 m. The thermophysical properties of the materials were 

taken from [8]. 

The inverse problem was intrinsically formulated in an external formulation in each 
iteration of the procedure (3) and was solved by the conjugate gradient method. The cessation 
of the descent process to the minimum residual point was realized by an additional measurement 
[9]. The identical useful signal perturbed according to a normal law with a given magnitude 
of the root-mean-square deviation was taken here as the main and additional information. In 
application to the results in Fig. 3 utilization of this cessation method yielded the number 
of steps at which the computation should be terminated ~ = 6. In this case application of 
the two-model algorithm thereby assured an approximately fifteen-fold savings in machine time 
as compared with the formulation (2). 

NOTATION 

x, r, cylindrical coordinates, T, running time; T o , relaxation time; p, density; c, 
specific heat; ~, heat conduction coefficient; L, degree of penetration of thermalperturba- 
tions; R, radius of the distorting action of the thermocouple; q, boundary heat flux density; 
T*, temperature at the measurement point. 

i. 

. 

. 

. 

5. 
6. 
7. 
8. 

. 
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